

Thermoelectric Material Library via Laser Melting

Yoshiaki Kinemuchi^{a)}, Masashi Mikami^{a)}, Ichiro Terasaki^{a), b)}, Woosuck Shin^{a)}

^{a)}National Institute of Advanced Industrial Science and Technology, ^{b)}Nagoya University

*y.kinemuchi@aist.go.jp

Research Highlights

- Rapid synthesis of thermoelectric compounds via laser melting is successfully applied to binary, ternary and • quaternary systems.
- Thermoelectric properties of the compounds reasonably agree with literature.
- Process time of the laser melting requires 2-3 min/sample, and 20 samples/batch is available.

Laser Melting System and Synthesized Compounds

Laser Melting Apparatus

[Laser specification] Semiconductor laser

Operation Mode : CW

Laser Power: 0 - 70W

350

300

250

200

150 100

0 1

(Hamamatsu Photonics, LD-HEATER)

Temperature monitoring range (two-color method): 200 - 800°C

Fig. Heating characteris various metals illuminated by a laser diode. The inset shows the saturated maximum temperature (T) under continuous laser rradiation with a certain power (F De slows (ATLO))

The slope $(\Delta T/\Delta P)$ is plotted as a unction of light absorptance (a)

Wavelength : 940nm±20nm (at 30W),

Spot Size: 1.2mm (at WD of 90mm)

0.2 0.3 0.4 0.5

Process Flow of TE Library

[Powder weighing] Semi-automated weighing system (Alpha, Japan) ccuracy ±1 mg Process time within 1 min for 1 g weighing

[Installing] Manual process Pelletizing into d 3 x h 5 mm² or pouring into Al₂O₃ crucible (di:4.6mm)

```
Install pellets in the chamber
```

Gas replacement or evacuation, if required

[Laser melting] [Specimen mounting]

[Grinding and polishing]

[TEP measurement] Thermopower and resistivity are measured using prober system. Base temperature is controllable with Peltier stage.

Thermal effusivity is reflectance method (FDTR, Bethel Japan) after Mo sputtering.

Laser melted materials (examples)

Thermoelectric Properties

Mn-Al-Si

20

10

-10 S / µVK -20 -30

-40

-50

-60

at RT

Ba-Ga-Al-Si (clathrate)

Rapid synthesis of thermoelectric compounds by laser melting 7. Kinemuchi, M. Mikami, I. Terasaki, W. Shin, Materials and Design 106 (2016) 30-36

Acknowledgment: This work is based on results obtained from the Future Pioneering Program "Thermal management materials and technology" commissioned by the New Energy and Industrial Technology Development Organization (NEDO).

http://www.aist.go.jp

国立研究開発法人 産業技術総合研究所