Nanoarchitecting to induce flexibility in $Ca_3Co_4O_9$ thin films for thermoelectric applications

Biplab Paul^{1,*}, Jun Lu¹, Per Eklund¹ ¹Thin Film Physics Division, Linköping University, SE-581 83 Linköping, Sweden *bippa@ifm.liu.se

Aim: The growth of flexible $Ca_3Co_4O_9$ thin films with better mechanical flexibility, while sustaining high thermoelctric efficiency comparable to that of its prisitine bulk values.

Motivation behind this study

□ CaO-CoO film deposited by rf- magnetron reactive cosputtering

 \Box As-deposited CaO-CoO film reactively annealed to form final phase of Ca₃Co₄O₉

Advantage of mica as substrate

- Mica can sustain high deposition temperature of 675 °C.
- Mica can serve as flexible substrate.
- Thin film can be transferred onto other flexible platform from mica substrate.

\Box Flexible Ca₃Co₄O₉ thin film

Different steps for developing flexible film from sample (T_s: 675 °C)

- Architecture of the film depends on the nanostructural evolution during thermally induced phase transformation during annealing.
- The pattern of nanostructural evolution depends on the relative arrangements of CaO and CoO phases in the as-deposited films, which is controlled by deposition temperature.

\Box Transfer of Ca₃Co₄O₉ film onto other flexible platform

• The film is transferred onto the adhesive tape following the steps shown below.

350

• Best value of electrical resistivity is obatained as 16.46 m Ω .cm near room temperature from sample (T_S: 675 °C).

• Power factor above 1×10^{-4} Wm⁻¹K⁻² is achieved from the same sample.

Conclusion:

- A nanorachitecting approach has been demonstrated to induce flexibility in $Ca_3Co_4O_9$.
- Mica acts as flexible substrate.
- Maximum power factor $\sim 1.2 \times 10^{-4} \text{ Wm}^{-1}\text{K}^{-2}$ near 300 °C.

Reference

• **B. Paul**, J. L. Schroeder, S. Kerdsongpanya, N. V. Nong, N. Schell, D. Ostach, J. Lu, J. Birch, P. Eklund, Advanced Electronic *Materials* **1**, 1400022 (2015).

Power factor

LINKOPINGS

CoO₂

)))