Establishing synthesis-composition-properties relationships for enhanced and reproducible thermoelectric properties of MgAgSb

Amandine Duparchy^{1,2}, Leo Millerand^{1,2}, Julia Camut¹, Silvana Tumminello¹, Hasbuna Kamila¹, Radhika Deshpande¹, Aidan Cowley²,

Eckhard Mueller^{1,3}, Johannes de Boor^{1,4}

Motivation

- Establish a long term and sustainable Moon base in the upcoming years (Artemis program)
- \succ TEG would be a good way to provide, electricity on the Moon base due to the absence of moving parts and their reliability.
- $\geq \alpha$ -MgAgSb working temperature range and mechanical properties make it a good candidate to withstand the conditions expected on the Moon.

Synthesis method

Ag

Mg

Four-step experimental route for MgAgSb synthesis

Aim

- \succ Find the experimental route that gives the highest reproducible efficiency while being upscalable at an industrial scale.
- Quantitative assessment of the impact of secondary phases on the TE properties

Results: effect of the cleaning step

Without cleaning step : nc-8-2

With cleaning step : c-8-9

(b)

(d)

Discussion

Analysis of effective composition vs. **TE properties**

> For an observed maximum variation of $5 \cdot 10^{19}$ cm⁻³ between the samples:

 $MgAg_{0.97-\delta}Sb_{0.995}$ with $\delta = 0.001$

- \rightarrow Homogeneity range ~ 0.1 at% as upper limit
- \succ Almost all samples are outside the homogeneity range
- \rightarrow The observed changes in p are mainly due to secondary phases

> nc-8-2 (no cleaning step): $Mg_3Sb_2 + (Ag)$ \succ c-8-9 (cleaning step): $Mg_3Sb_2 + Sb_3$

The average figure of merit versus the effective composition determined by EDX. Averaging range : $T_c = 300 \text{ K}$; $T_h = 550 \text{ K}$

- \succ For a given deviation from the "ideal" stoichiometry:
 - zT_{avg} samples Sb-rich stoichiometry > zT_{avg} samples Sb-poor stoichiometry.
- Deviation between 1 and 2 at% in Mg and Sb from MgAg_{0.97}Sb_{0.995} corresponds respectively to -50% and -20% in zT_{avg}

Single phase region estimation

> Simple defect chemistry model to provide a rough estimate for the phase width: no external dopant was employed \rightarrow assume p is affected only by the MgAgSb matrix properties $(V_{Aq} \text{ and } Ag_{Mq})$

Charge carrier mobility versus the effective composition determined by EDX

- \succ MgAgSb p-type semiconductor + Mg₃Sb₂ n-type impurity + (Ag) rich solution \rightarrow decrease drastically μ , thus σ and zT
- \succ p-type MgAgSb + p-type Mg₃Sb₂ impurity + Sb seems less detrimental for μ

Conclusion

Modified synthesis route:

- \checkmark Improved the reproducibility of the TE properties between several batches
- ✓ Enhanced the achieved zT_{max} to 1.34 ±

Temperature (K) Figure of merit for samples before and after cleaning step

> After cleaning step higher \rightarrow reproducibility of TE properties

 \succ zT within the same range as literature

 \rightarrow Process control improved

 $\succ p$ defined as the hole density minus electron density. With Sb content remaining constant :

0.19 at 561 K

- Exact position of the single phase region not known
- Why do the different secondary phases affect so differently the TE properties

References: [1] <u>www.esa.int</u>; [2] Rodriguez-Barber, I., et al., On the influence of AgMg precursor formation on MgAgSb microstructure and thermoelectric properties. Journal of Alloys and Compounds, 2021

Acknowledgments : Financial support for the internship is provided by Spaceship EAC, as part of the European Astronaut Centre, belonging to the European Space Agency (ESA). The laboratories are supplied by the German Aerospace Centre (DLR).

Scientific article can be found in Journal of Materials Chemistry A for more details

Deutsches Zentrum für Luft- und Raumfahrt

¹German Aerospace Center (DLR), Institute of Materials Research, Köln, Germany ²European Space Agency (ESA), European Astronaut Centre (EAC), Spaceship EAC, Köln, Germany ³Justus Liebig University Giessen, Institute of Inorganic and Analytical Chemistry, Giessen, Germany ⁴University Duisburg-Essen, Institute of Nanoscience Engineering, Bismarckstr. 81, 47057 Duisburg, Germany

European Space Agency