University of Reading

Aikinite systems:

ultra-low thermal conductivity for thermoelectric applications

Shriparna Mukherjee¹, Virginia Carnevali², David J. Voneshen³, Marco Fornari², Anthony V. Powell¹, Paz Vaqueiro¹

¹Department of Chemistry, University of Reading, Whiteknights, Reading, UK

²Department of Physics, Central Michigan University, Mt. Pleasant, USA

³Rutherford Appleton Laboratory, Didcot, UK; Royal Holloway University of London, Egham, UK

- Distance between Cu and Pb : smaller than the sum of their van-der Waals radii.
- Bonding environment around the Bi³⁺ cation is heterogeneous.

Conclusion

LOW THERMAL CONDUCTIVITY in aikinite:

- Higher U_{iso} of Cu and Pb: weak interatomic bonding and 'rattling'-like vibrations.
- Weakly bonded channels of Pb, larger mode-resolved Grüneisen parameter for Pb.
- Low frequency phonon modes observed from INS: attributed to optical modes for Pb.
- Low phonon lifetime for Pb mode: indicate increased phonon-phonon scattering.
- Pb mode hardening with increasing temperature: evidence of high anharmonicity.
- Short Cu-Pb distance: Interaction between Cu⁺ and 6s² lone pairs of Pb²⁺.
- TUNABLE SEMICONDUCTING TYPE: p-type CuPbBiS₃ to n-type via halide doping and stoichiometric changes.

References

1) A.V. Powell, J. Appl. Phys., 126 (2019)100901(1-20). 2) K. Biswas et.al., Adv. Energy Mater. 2012, 2 (6), 634–638. 3) K. Maji et.al., J. Am. Chem. Soc. 2022, 144 (4), 1846–1860. 4) https://doi.org/10.5286/ISIS.E.RB2210076

Contact Email: <u>shriparna.mukherjee@reading.ac.uk</u>

Acknowledgment LEVERHULME T R U S T _____

Science & Technology Facilities Council ISIS Neutron and Muon Source

HPC-MSU: computation facility